Increase Publishing Probability - Some Simple Rules to Follow

Bill Knowlton1,2
1Department of Materials Science & Engineering
2Department of Electrical Engineering
Boise State University

MSE 478/578 - Scientific Communication in MSE

Oxymoron? It does not have to be.
Bourne Rule 1

Rule 1: Read many papers, and learn from both the good and the bad work of others.

- It is never too early to become a critic
 - Journal clubs: critique a paper as a group - excellent for having this kind of dialogue
 - Reading:
 - At least 2 papers/day
 - In detail
 - Not just in your area of research
 - Examine their quality

Bourne Rule 1 (cont.)

Rule 1: Read many papers, and learn from both the good and the bad work of others.

- Being well read has another potential major benefit
 - Facilitates a more *objective* view of one's own work
 - Too easy after many late nights spent in front of a computer screen &/or lab bench to convince yourself that your work is the *best invention since sliced bread*
 - More than likely it is not, and your mentor is prone to falling into the same trap

- Hence...
Bourne Rule 2

Rule 2: The more objective you can be about your work, the better that work will ultimately become

- Objectivity about your own work will make you a better scientist/engineer
- Learn objectivity early - the editors and reviewers have

Bourne Rule 3

Rule 3: Good editors and reviewers will be objective about your work

- The quality of the editorial board is an early indicator of the review process
- Outstanding editors demand and get outstanding reviews
- Put your energy into improving the quality of the manuscript before submission
- Ideally, the reviews will improve your paper
- But, if there are fundamental flaws - editors will just reject your manuscript
Rule 4: If you do not write well in the English language, take lessons early; it will be invaluable later

- Not just about grammar, but more about *comprehension*
- The best papers - complex ideas are expressed in a way that those who are less immersed in the field can understand
- Have you noticed that the most renowned scientists often give the most logical & simply stated yet stimulating lectures?
- This extends to their written work as well

Rule 4 (cont.): If you do not write well in the English language, take lessons early; it will be invaluable later

- Writing *clearly* is valuable - even if your ultimate career does not hinge on producing good scientific papers in English language journals
- Submitted papers that are *not clearly written* in good English
 - Often *rejected*
 - Or, at best, *slow to publish* since they require extensive copy editing
Bourne Rule 5

Rule 5: Learn to live with rejection.

- A failure to be objective can make rejection harder to take, and you will be rejected!
- Scientific careers are full of rejection, even for the best scientists.

Bourne Rule 5 (cont.)

Rule 5: Learn to live with rejection.

- The correct response to a paper being rejected or requiring major revision is to:
 - Listen to the reviewers
 - Respond in an objective, not subjective, manner.

- Reviews reflect how your paper is being judged—learn to live with it.
Bourne Rule 5 (cont.)

Rule 5: Learn to live with rejection.

- If reviewers are *unanimous* about the poor quality of the paper, move on—in virtually all cases, *they are right*.
- If they request a major revision:
 - Do the major revision
 - Address every point they raise
 - Both in your cover letter
 - Through obvious revisions to the text.
- Multiple rounds of revision are painful for all those concerned and slow the publishing process.

Bourne Rule 6

Rule 6: The ingredients of good science are obvious

- Novelty of research topic
- Comprehensive coverage of the relevant literature
- Good data
- Good analysis including strong statistical support
- Thought-provoking discussion
Bourne Rule 6 (cont.)

Rule 6: The ingredients of good science are obvious

- Be *objective* about these ingredients when you review the first draft & do not rely on your mentor
 - Get a candid opinion by having the paper read by colleagues without a vested interest in the work
 - Include those not directly involved in the topic area
 - But give them finished work - if you give them half finished work, it's a waste of their time

Bourne Rule 7

Rule 7: Start writing the paper the day you have the idea of what questions to pursue

- This helps:
 - Define scope of study
 - Facilitates hypothesis-driven science
 - Encourages the thought process of the experiments prior to performing the experiments which will reveal flaws

- Doing the thinking & writing up front will lessen the experimental work over the long run
Bourne Rule 7 (cont.)

Rule 7: Start writing the paper the day you have the idea of what questions to pursue

- The temptation of novice authors is to try to include everything they know in a paper
 - Your thesis is/was *everything* including your "kitchen sink"
 - However, your papers should be:
 - Concise
 - Impart as much information as possible in the least number of words

- Be familiar with the "Guide to Authors"
 - Follow it - the editors and reviewers do
 - Maintain a good bibliographic database *as you go*, and read the papers in it

Bourne Rule 8

Rule 8: Become a reviewer early in your career.

- Reviewing other papers will help you write better papers

- To start, work with your mentors:
 - Have them give you papers they are reviewing
 - Do the 1st cut at the review (most mentors will be happy to do this)
 - Then, go through the final review that is sent in by your mentor
 - Where allowed, look at the reviews other reviewers have written
Bourne Rule 8 (cont.)

- Rule 8: Become a reviewer early in your career
 - This will provide an important perspective on the quality of your reviews
 - Hopefully allow you to see your own work in a more objective way
 - You will also come to understand:
 - The review process
 - Quality of reviews
 - This is an important ingredient in deciding where to send your paper

Bourne Rule 9

- Rule 9: Decide early on where to try to publish your paper
 - This will define the paper's:
 - Format/structure
 - Level of detail
 - Assumed novelty of the work you are doing
 - Even before the paper is written:
 - Get a sense of the novelty of the work
 - Determine whether a specific journal will be interested
Bourne Rule 10

Rule 10: Quality is everything
- It is better to publish one paper in a quality journal than multiple papers in lesser journals
- Increasingly, it is harder to hide the impact of your papers
- Tools like Google Scholar, Google Scholar - My Citations, and the ISI Web of Science are being used by tenure committees and employers to define metrics for the quality of your work

Bourne Rule 10 (cont.)

Rule 10: Quality is everything
- It used to be that just the journal name was used as a metric
- In the digital world, everyone knows if a paper has little impact
- Try to publish in journals that have high impact factors; chances are your paper will have high impact, too, if accepted
Forney Rule 1

- Your Job is to make your paper *easy to understand*

- Readers will not read your paper if your paper is difficult to understand

Forney Rule 2

- Be kind to your reader!

Eschew Obfuscation: Advice on Writing Clearly, by L.J. Forney & T. Hartzell, University of Idaho (presented at the 2008 & 2009 Idaho INBRE Conference)
Forney Rule 3

- Lead the reader by the hand

- Write clearly
- Don’t ignore the obvious
- The best papers are those in which complex ideas are expressed in a way that those who are less immersed in the field can understand

Forney Writing Hints

Writing Hints

- Tell them what you’re going to tell them

- Readers love *topic sentences*
 - What is a *topic sentence*?

- Use simple declarative sentences - they are beautiful

- No need to write fancy stuff
References for this overview:

[2] *Eschew Obfuscation: Advice on Writing Clearly*, Larry J. Forney, Dept. of Biological Sciences, Professor Trish Hartzell, PhD. Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID; presented at the 2008 INBRE Conference, Boise, ID