Lithium-ion batteries are a common type of renewable energy storage. Concerns about their cost and material availability have led to sodium-ion batteries (NIBs) being considered as a viable alternative. In order to compete with lithium-ion technology, the storage capacity and stability of NIBs must be improved.

Hypothesis: Coating the titania (TiO₂) nanotube anode with alumina (Al₂O₃) and TiO₂ will stabilize the solid electrolyte interphase (SEI) layer and subsequently increase the reversible capacity of the sodium-ion battery.

Future Work:
- Investigate 2 nm Al₂O₃ coatings on amorphous TiO₂ nanotubes to confirm its positive effect
- Improve process control to minimize variations in sample preparation

Summary:
- TiO₂ nanotubes were coated in Al₂O₃ and TiO₂ and used as anodes in sodium-ion batteries
- 2 nm Al₂O₃ coating on amorphous TiO₂ increased capacity and coulombic efficiency, while 4 and 8 nm Al₂O₃ coatings drastically decreased capacity
- Al₂O₃ coatings had little effect on anatase TiO₂ batteries
- TiO₂ coatings slightly improved anatase TiO₂, coulombic efficiency
- Significant variation was observed in control samples

References
3. Andreas Savva, Kassiopeia Smith, Steven Letourneau, Elton Graugnard*, Hui Xiong*

*email: eltongraugnard@boisestate.edu *email: clairexiong@boisestate.edu

Acknowledgments
This project was supported by NSF grant no. 1359344 and the Materials REU program at Boise State University. We also thank the students and staff of the Department of Materials Science & Engineering.