Thermoelectric Figure of Merit (ZT)

- Provides a measure of the thermoelectric performance of the TE material

\[ZT = \frac{\alpha^2 \kappa}{\rho} \]

\[\alpha = \text{Seebeck coefficient} \]
\[\kappa = \text{thermal conductivity} \]
\[\rho = \text{electrical conductivity} \]
\[\Delta V = \text{Seebeck voltage} \]
\[\Delta T = \text{temperature difference} \]

Efficiency
- Percent energy output from TE device

\[\eta = \frac{\text{Power Output}}{\text{Heat Input}} \]

\[\eta_{\text{max}} = \frac{T_{\text{hot}} - T_{\text{cold}}}{T_{\text{hot}}} \left(1 + \frac{ZT_{\text{max}}}{T_{\text{cold}} / T_{\text{hot}}} \right) \]

Seebbeck Effect
- Applied temperature difference creates a current
- Temperature gradient across the TE material causes higher energy charge carriers to diffuse toward colder side
- Continuously applied heat keeps charge carriers moving

Pelletier Effect
- Applied current causes a temperature difference
- Charge carriers have different heat carrying capacities in different materials
- Charge carriers moving between materials cause heat to be absorbed or rejected

Fabrication Objectives
- Strong bond between half-Heusler and conducting material
- Consistent braze joints
- Desired electrical and thermal properties of braze
- High efficiency uniconductive devices
- Low thermal conductivity

Materials Selection
- Half-Heusler compound
- Nanostuctured alloys increase ZT
- Braze alloy
- Diffusion bonding influences joint strength
- Similar thermal expansion coefficients are ideal
- Braze foil thickness changes joint properties
- Conductive material
- Copper provides high conductivity electrical connection
- Direct Bonded Copper (DBC) provides insulation

Assembly and Joint Brazing Procedure
- Sand parts to appropriate size (approximately 2×2×3 mm)
- Clean components in sonication process
- Assemble half-Heusler legs, braze foil, and direct bonded copper (DBC); or copper, braze foil, and copper in brazing fixture
- Brazes and components in vacuum furnace (approximately 0.01-0.06 mbar at highest vacuum)

Results
- a) Tensile stress test results from Copper – Incoloy™-ABA – Copper joints brazed at 825°C for 5 minutes with various pressures applied to legs; and b) completely reversed bending test results from Copper – Cusil™ – Copper and Copper – Cusil™-ABA – Copper joints brazed at 825°C for 5 minutes (samples from data points marked red can be seen below)
- Copper leg braze interface after c) tensile; and d) bending tests for various numbered samples shown in red on graphs above (leg dimensions ~2×3 mm)
- e) SEM images of Copper – Cusil™ – Copper braze joint interface; and f) GM2 Energy example voltage measurement across braze joint to measure contact resistance

Future Directions
- Increase material uniformity to create more consistent devices
- Decrease variability in part sizes during fabrication
- Increase braze consistency to overall leg performance
- Improve braze fixtures to streamline braze process
- Apply pressure uniformly throughout braze cycle
- Higher quantity fabrication yield
- Develop better tensile testing apparatus to attach TE legs for testing
- Improve resistance measurement technique across joint
- Test material limits with current fixtures and fabrication techniques
- Implement efficiency measurements, thermal cycling tests, and thermoelectric generator (TEG) testing to determine power output and lifetime of TE device for various applications

Fabrication Issues
- Increase in global energy usage has created a growing need for new, efficient energy technologies
- Thermal energy losses pose many problems in current technologies
- Thermoelectric (TE) materials provide a method to convert waste heat directly into energy, making them a strong contender for energy production
- Most current TE generators and materials are costly and inefficient
- In order to improve feasibility of thermoelectric energy generation we need to improve modules
- Optimizing fabrication methods will help improve TE module efficiency

Acknowledgements
This research was supported by the Boise State University REU in Materials for Energy and Sustainability and sponsored by National Science Foundation grant 1359344.

References
1. Adapted from Snyder et al., 2008 Nature Materials, 10-14
2. GM2 Energy, Inc., Voltage Measurement