Two-Dimensional Transition Metal Dichalcogenides (2D-TMDs) Studies via Computer Calculations

1,2 Ian Rivera-Colón, 2 Matthew Lawson, 2 Dr. Lan Li
INTER AMERICAN UNIVERSITY OF PUERTO RICO, Bayamon, PR 1
MICRON SCHOOL of MATERIALS SCIENCE AND ENGINEERING, BOISE STATE UNIVERSITY, Boise, ID 2

Abstract

The research work behind Two-Dimensional materials, such as Graphene opens a new set of possibilities to the creation of this type of materials that will have the same or even better thermoelectrically properties than Graphene. The main example of these materials, are the two-dimensional transition metal dichalcogenides (2D-TMDs), which in this case we’ll be working with MoS2. This molecule, will then be doped or assembled in a vertical heterojunction with semiconductors; to later measure the interaction between the atoms in both process. Our objective is to develop, via computational calculations (VASP), the most stable and efficient set of atoms and their ground state; that in the future could end up having very useful technological applications, such as sensors, communication systems, intelligent memory and much more.

Background

• 2D-TMDs
 • Also known as MX2s

Fig 1: Layered X-M-X atomic structure of ML2 along c-axis. M is shown in blue, and S in yellow. Adjacent layers (not shown) form with weak van der Waals interactions.

• VASP
 • The software code use to calculate DFT calculations

Methods & Procedure

- First-principles of Density Functional Theory (DFT)
- For Geometry Optimization Calculations
- Convergence Test
- In order to find the ideal Ground State Energy

Results & Conclusion

- Doping (Ti)

\[E_{Total} - E_{Pure} - E_{Ti} = E_{Formation} \]

- Vertical Heterojunction (W)

Although the atoms in the molecules interacted in a great way between each other, further analysis needs to be done, like increasing the doping concentration and assembling new vertical heterojunctions with other semiconductors, to understand better the thermoelectric properties of these materials.

Special thanks for my mentor Dr. Li and Matthew Lawson for working with me during these two months; BSU for having me here and the NSF for funding. (DMR 1658076).