Homework 3
Due 20 September 2018
The numbers following each question give the approximate percentage of marks allocated to that question.

1. Briefly define/explain each of these terms. Add a sketch if convenient.

 (a) unit cell
 (b) lattice parameters
 (c) symmorphic space group
 (d) abelian

 2
 2
 2
 2
2. Use the metric tensor to calculate the distance between atoms at 000 and $\frac{1}{2} \frac{3}{4}$ in a monoclinic unit cell with lattice constants $a = 1 \text{ Å}, b = 2 \text{ Å}, c = 3 \text{ Å}, \beta = 95^\circ$.

3. For each space group listed below, identify the point group and Bravais lattice.

- P6$_1$22
- P2$_1$/c
- Cmc2$_1$
- I4$_1$md
- Fd$\bar{3}$

4. Many space group notations are dependent upon the orientation of the axes which one chooses to describe a structure. In such cases there is a “standard” setting, but potentially many other “non-standard” ones as well. In the example of Pban (#50), if the axes were re-oriented such that $abc \rightarrow cab$, use what you know about symmetry operations and space-group notation to determine what the new notation would be, and explain your answer.
5. The structure of NaCl is usually described as face-centered cubic in space group \(Fm\bar{3}m\). The ionic positions are:

\[
\begin{align*}
\text{Na}^+ & \quad 4a & 0, 0, 0 \\
\text{Cl}^- & \quad 4b & \frac{1}{2}, \frac{1}{2}, \frac{1}{2}
\end{align*}
\]

Sketch one unit cell of this structure. How many ions comprise the basis? Annotate your drawing to show these ions.

A body-centered unit cell can be inscribed within the face-centered one. Sketch this new unit cell within a single fcc NaCl one and indicate its basis. What is the new Bravais lattice which is formed?

It is always possible to draw a primitive unit cell of any crystalline structure. Inscribe a primitive unit cell within a single fcc NaCl one and indicate its basis. What is the Bravais lattice now?
6. a. Draw a representation of $2/m$ point symmetry, including all the necessary symmetry elements and symmetry-related objects. Using this diagram, construct a multiplication table for this point group. Use either Schönflies or Hermann-Mauguin notation.

HINT: The order of the group is four.

b. Draw a representation of $3m$ point symmetry, including all the necessary symmetry elements and symmetry-related objects, *uniquely labeling all of the mirror symmetry elements present*. Using this diagram, construct a multiplication table for this point group using the same labels. Use either Schönflies or Hermann-Mauguin notation.

HINT: The order of the group is six.

c. Which, if either, of these two groups is/are abelian?
7. Draw schematics showing the positions of objects along a 3_1 and a 4_3 screw axis. For each case assume the screw axis is the c axis and draw the axis in two ways, first parallel to the plane (c axis to the right) then perpendicular to the plane (c axis coming out of the plane), using the correct symbol for the symmetry element. Consider the implications of translational symmetry in each case.

For both 3_1 and 4_3, write out the resultant overall transformation (both rotation matrix and translation vector as well as their sum) in an appropriate axis system.

Demonstrate another way of describing the right-handed 4_3 screw symmetry?