Homework 6
Due 1 November 2016
The numbers following each question give the approximate percentage of marks allocated to that question.

1. Briefly define/explain each of these terms. Add a sketch if convenient.

 (a) unit cell 5
 (b) lattice parameters 5
 (d) Laue class 5
 (e) symmorphic space group 5
 (f) abelian 5
2. For each group listed below, identify the point group and Bravais lattice.

P6\textsubscript{1}22:
P2\textsubscript{1}/c:
Cmc\textsubscript{2}1:
I4\textsubscript{1}md:
Fd\textsubscript{3}:

3. State the point group that results if a centre of symmetry is added to the following point groups:

(a) 1
(b) 2
(c) 3
(d) 4
(e) 6
(f) 222
(g) 422
(h) 432
(i) 23
(j) 32

4. Calculate the direction which is perpendicular to the normals of both (123) and (4\textbar 0) in a cubic crystal (i.e., the direction contained in both the (123) and (4\textbar 0) planes).
5. Draw schematics showing the positions of objects along a 3_1 and a 4_3 screw axis. For each case assume the screw axis is the c axis and draw the axis in two ways, first parallel to the plane (c axis to the right) then perpendicular to the plane (c axis coming out of the plane), using the correct symbol for the symmetry element. Consider the implications of translational symmetry in each case.

For both 3_1 and 4_3, write out the resultant overall transformation (both rotation matrix and translation vector as well as their sum) in an appropriate axis system.

Demonstrate another way of describing the right-handed 4_3 screw symmetry?
6. The structure of NaCl is usually described as face-centered cubic in space group \(Fm\overline{3}m \). The ionic positions are:

- \(\text{Na}^+ \quad 4a \quad 0, 0, 0 \)
- \(\text{Cl}^- \quad 4b \quad \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \)

Sketch one unit cell of this structure. How many ions comprise the basis? Annotate your drawing to show these ions.

A body-centered unit cell can be inscribed within the face-centered one. Sketch this new unit cell within a single fcc NaCl one and indicate its basis. What is the new Bravais lattice which is formed?

It is always possible to draw a primitive unit cell of any crystalline structure. Inscribe a primitive unit cell within a single fcc NaCl one and indicate its basis. What is the Bravais lattice now?