0.0.1 What is NLP?

- Answer: machine learning applied to language data and tasks

What is Machine Learning?

- Answer: $f(x)$
- Programmers do a lot of things. Foremost is writing rules into functions (programs, classes, etc.). Machine learning is when machines write those functions themselves.
- ML is algorithms that learn functions.

0.0.2 How can machines learn?

- Answer: data
- Answer: probability and information theory (i.e., statistics)
- Answer: mathematical models
- Answer: for NLP, knowledge about linguistics

Discussion: There are many ways to put data, probability/information theory, mathematical models, and linguistic knowledge together. You’ve likely heard of classifiers which can take various information and yield some kind of discrete label. You’ve heard of artificial neural networks and deep learning which can take continuous data, select the information that is useful, and produce either a discrete label or some kind of high-dimensional representation within the layers. NLP has a lot of ties to artificial intelligence; in fact, the more interesting unsolved problems of AI, such as language understanding and spoken interaction, are largely NLP tasks.
0.0.3 Applications

- Automatic Speech Recognition (ASR)
- Text to Speech Synthesis (TTS)
- Dialogue Systems / Digital Personal Assistants (e.g., Siri, Cortana ...)
- Chatbots
- Search / Information Retrieval
- Text Analytics
- Sentiment Analysis
- Machine Translation
- Spam Filtering
- Spell / Grammar Checking
- Summarization (e.g., of meetings or news)
- Automatic image description generation
-

1 Example: Predicting a Name’s Type

Scenario: Suppose you work for a company that is trying to keep track of all movies ever made. So you write a program (using NLP techniques) that can extract names from texts like Wikipedia. For example:

- Music Through the Years
- Walking on the Wild Side

But you also find that many of the names don’t belong to movies. For example:

- Dihistine Expectorant 131
- Carlos Saavedra Lamas
- American Retirement Corp.

In fact, you find that many of the names you extract are things like people’s names, drug/medicine names, as well as names of companies.

Task: use a classifier to determine the type of a name. So you gather as much data as you can and you go through a lot of names and label them. As you do so, you don’t really notice any patterns in determining what names belong to which type. So you can’t just write a function with some rules. Instead, you try some ML/NLP.

In [39]: import pandas as pd

In [40]: data = pd.read_csv('pmp-train.txt', names=['type', 'name'], delimiter='\t', encoding='ISO-8859-1')

In [41]: data[:10]

Out[41]:
 type name
0 drug Dilotab
1 movie Beastie Boys: Live in Glasgow
2 person Michelle Ford-Eriksson
Using this data, we can try using the words in the names to predict the type. First, we’ll want to normalize the text a little bit by making everything lower case.

```python
In [4]: data['split_names'] = data['name'].map(lambda x: x.strip().lower().split())
```

```
Out[5]:

<table>
<thead>
<tr>
<th>type</th>
<th>name</th>
<th>split_names</th>
</tr>
</thead>
<tbody>
<tr>
<td>drug</td>
<td>Dilotab</td>
<td>[dilotab]</td>
</tr>
<tr>
<td>movie</td>
<td>Beastie Boys: Live in Glasgow</td>
<td>[beastie, boys, live, in, glasgow]</td>
</tr>
<tr>
<td>person</td>
<td>Michelle Ford-Eriksson</td>
<td>[michelle, ford-eriksson]</td>
</tr>
<tr>
<td>place</td>
<td>Ramsbury</td>
<td>[ramsbury]</td>
</tr>
<tr>
<td>place</td>
<td>Market Bosworth</td>
<td>[market, bosworth]</td>
</tr>
<tr>
<td>drug</td>
<td>Cyanide Antidote Package</td>
<td>[cyanide, antidote, package]</td>
</tr>
<tr>
<td>person</td>
<td>Bill Johnson</td>
<td>[bill, johnson]</td>
</tr>
<tr>
<td>place</td>
<td>Ettalong</td>
<td>[ettalong]</td>
</tr>
<tr>
<td>movie</td>
<td>The Suicide Club</td>
<td>[the, suicide, club]</td>
</tr>
<tr>
<td>place</td>
<td>Pêzenas</td>
<td>[pêzenas]</td>
</tr>
</tbody>
</table>
```

In [6]: import nltk

 from nltk.classify.naivebayes import NaiveBayesClassifier

 import collections as c

1.1 Training Step using a Naive Bayes Classifier

```python
In [7]: # train
data['feats'] = data['split_names'].map(lambda x: c.Counter(x))
train_data = list(zip(data['feats'], data['type']))

    classifier = NaiveBayesClassifier.train(train_data)
```

1.2 Evaluation Step

```python
In [8]: # evaluate
    
nltk.classify.util.accuracy(classifier, train_data)
```

Out[8]: 0.9761439931431837

1.2.1 Our classifier can predict the correct name type over 97% of the time!
Actually, it can’t.
1.3 It is a cardinal sin in ML/NLP to evaluate on your training data.
Fortunately, we’ve separated some data to use for evaluation.

In [9]: test = pd.read_csv('pnp-test.txt', names=['type', 'name'], delimiter='\t', encoding='ISO-8859-1')
 test['split_names'] = test['name'].map(lambda x: x.strip().lower().split())
 test['feats'] = test['split_names'].map(lambda x: c.Counter(x))
 test_data = list(zip(test['feats'], test['type']))

In [10]: # evaluate
g
 nltk.classify.util.accuracy(classifier, test_data)

Out [10]: 0.6693333333333333

1.3.1 That’s a more reliable measure of how your classifier will function given new names.

Discussion

• Important in ML/NLP is generalizability (the opposite of over-training)
• Always split up your data into train/dev/test. Use train/dev while you are programming, working out tweaks, munging data, adjusting your classifier, then when you are done try out your classifier on the test data.
• A large portion of ML/NLP is dealing with data.

1.4 What’s in a classifier?

1.4.1 Let’s take a closer look at how the Naive Bayes Classifier works

What kind of information can we get from our data?

• We know the types
• We know the names
• We know which names belong to which type

We can use probability theory to help us. Are some types more common than others? We can easily plot this information.

In [11]: %matplotlib inline
 import nltk
 nltk.FreqDist(data['type']).plot()
Let’s use this frequency information to our advantage! We can write a simple probability function that can return the probability of a type. It determines that probability by counting the relative frequencies of the types.

2 \(P(T) \)

In [12]: types = set(data['type'])

 type_count = c.Counter(data['type'])

 def Ptype(T=''):
 return type_count[T] / float(len(data))

What about the words? The frequency of the words should be taken into account in our classifier. We can write a simple probability function that returns the probability of a word. It determines that probability by counting up the relative frequencies of the words.

3 \(P(W) \)

In [13]: all_words = [word for name in data['split_names'] for word in name]
3.0.1 What about both words and types? We should somehow model the relationship between words and types. We can write a conditional probability function that counts up the words for each individual type.

4 \(P(W \mid T) \)

In [14]:
word_count = c.Counter(all_words)
total_word_count = sum(word_count.values())

def Pword(W=''):
 if W not in word_count: return 0.000001 # what's this? "stupid smoothing" for when
 return word_count[W] / total_word_count

4.0.1 But what we really want is to predict the type given the words, right? How can we model that given what we have?

Answer: Bayes’ Rule

4.0.2

\[P(T \mid W) = \frac{P(W \mid T)P(T)}{P(W)} \]

In [16]: # Bayes' Rule

def Ptw(T='', W=''):
 return Pwt(W=W, T=T) * Ptype(T=T) / Pword(W=W)

In [43]: for t in types:
 print(t, Pwt(W='the', T=t))

person 1e-06
movie 0.05773911242297136
company 0.007047134935304991
drug 1e-06
place 0.0004970178926441351
4.0.3 But Bayes’ Rule only cares about individual words. How do we predict the type given a name which is made up of multiple words?

Answer: multiply.

\[P(T|W_1...W_n) = \prod_w P(T|W = w) \]

4.1.1 This constitutes the Naive Bayes Classifier.

In [17]: import numpy as np

 def P(T=' ',N=' '):
 return np.prod([Ptw(T=T, W=w) for w in N])

4.1.2 Evaluating our classifier.

Evaluate by taking each name and asking your classifier what it thinks the probability of the type is given the name. Take the type that got the highest probability as your guess and see if your classifier was right using the testing data.

In [18]: cor = 0.0

 for typ,name in zip(test['type'],test['split_names']):
 probs = [(t, P(T=typ, N=name)) for t in types]
 m = ('', 0.0)
 for t,p in probs:
 if p > m[1]: m = (t, p)
 if typ == m[0]: cor += 1.0

cor / float(len(test))

Out[18]: 0.6792380952380952

4.1.3 Which is slightly higher than the NLTK implementation of the Naive Bayes Classifier.

4.1.4 Discussion:

• Naive Bayes is a very very simple classifier that makes a lot of independence assumptions. For example, it assumes that the words have no relation to each other (but this is clearly wrong!).

5 Analyzing Sentiment

What is sentiment analysis? Given some text, try to determine if the sentiment of the writer of that text was positive, negative, or neutral. This is fairly easy for humans to do, but we want to automate this because we want to know if something (e.g., our restaurant, movie, book, or other product) is being talked about in real-time on social media, and, more importantly, what people think about our product. Knowing if a tweet or a post is positive or negative can help us see how our product is being received and how we can improve it.
Example: sentiment about election candidates in Belgium: http://www.clips.ua.ac.be/pages/pattern-examples-elections

- some data: http://help.sentiment140.com/for-students

Columns:

0 - the polarity of the tweet (0 = negative, 2 = neutral, 4 = positive)
1 - the id of the tweet (2087)
2 - the date of the tweet (Sat May 16 23:58:44 UTC 2009)
3 - the query (lyx). If there is no query, then this value is NO_QUERY.
4 - the user that tweeted (robotickilll2dozr)
5 - the text of the tweet (Lyx is cool)

In [44]: cols = ['polarity', 'id', 'date', 'query', 'user', 'tweet']

data = pd.read_csv('sentiment.train.csv', names=cols, encoding='ISO-8859-1')
print('length of data {}'.format(len(data)))
test = pd.read_csv('sentiment.test.csv', names=cols, encoding='ISO-8859-1')
print('length of test {}'.format(len(test)))
data = pd.concat([data, test])
print('length of both {}'.format(len(data)))

length of data 1600000
length of test 498
length of both 1600498

In [20]: data = data.sample(frac=0.1, random_state=200) # this is a lot of data, while we develop lib

data = data.drop(['id', 'date', 'query', 'user'], axis=1)

In [21]: data[:5]

Out[21]:

<table>
<thead>
<tr>
<th>polarity</th>
<th>tweet</th>
</tr>
</thead>
<tbody>
<tr>
<td>888312</td>
<td>4 Breaky burrito at Whole Foods is a good way to...</td>
</tr>
<tr>
<td>516573</td>
<td>0 i’m out! gonna check my facebook. please!!!!!!!...</td>
</tr>
<tr>
<td>970735</td>
<td>4 yay just won mac msf in petticoat on ebay and ...</td>
</tr>
<tr>
<td>862961</td>
<td>4 @shezDOPEx3 i love you more</td>
</tr>
<tr>
<td>122643</td>
<td>0 @mahdi Maybe the problem is from my ISP</td>
</tr>
</tbody>
</table>

In [22]: c.Counter(data.polarity)

Out[22]: Counter({0: 80028, 2: 12, 4: 80010})

We have a fairly even spread between positive (0) and negative tweets (4). I want to get rid of the neutral tweets.

In [23]: data = data[data['polarity'] != 2] # remove anything where polarity is 2

In [24]: c.Counter(data.polarity)
Out[24]: Counter({0: 80028, 4: 80010})

Now I want to represent the polarity as a string neg or pos.

In [46]: data['polarity'] = data.polarity.map(lambda x: 'neg' if x == 0 else 'pos')
In [47]: data[:10]

Out[47]:
<table>
<thead>
<tr>
<th>polarity</th>
<th>id</th>
<th>date</th>
<th>query</th>
</tr>
</thead>
<tbody>
<tr>
<td>neg</td>
<td>1467810369</td>
<td>Mon Apr 06 22:19:45 PDT 2009</td>
<td>NO_QUERY</td>
</tr>
<tr>
<td>neg</td>
<td>1467810672</td>
<td>Mon Apr 06 22:19:49 PDT 2009</td>
<td>NO_QUERY</td>
</tr>
<tr>
<td>neg</td>
<td>1467810917</td>
<td>Mon Apr 06 22:19:53 PDT 2009</td>
<td>NO_QUERY</td>
</tr>
<tr>
<td>neg</td>
<td>1467811184</td>
<td>Mon Apr 06 22:19:57 PDT 2009</td>
<td>NO_QUERY</td>
</tr>
<tr>
<td>neg</td>
<td>1467811193</td>
<td>Mon Apr 06 22:19:57 PDT 2009</td>
<td>NO_QUERY</td>
</tr>
<tr>
<td>neg</td>
<td>1467811372</td>
<td>Mon Apr 06 22:20:00 PDT 2009</td>
<td>NO_QUERY</td>
</tr>
<tr>
<td>neg</td>
<td>1467811592</td>
<td>Mon Apr 06 22:20:03 PDT 2009</td>
<td>NO_QUERY</td>
</tr>
<tr>
<td>neg</td>
<td>1467811594</td>
<td>Mon Apr 06 22:20:03 PDT 2009</td>
<td>NO_QUERY</td>
</tr>
<tr>
<td>neg</td>
<td>1467811795</td>
<td>Mon Apr 06 22:20:05 PDT 2009</td>
<td>NO_QUERY</td>
</tr>
</tbody>
</table>

user
tweet
0 _TheSpecialOne @switchfoot http://twitpic.com/2y1zl - Awww, t...
1 scotthamilton is upset that he can't update his Facebook by ...
2 mattyccus @Kenichan I dived many times for the ball. Man...
3 ElleCTF my whole body feels itchy and like it's on fire
4 Karoli @nationwideclass no, it's not behaving at all...
5 joy_wolf @Kwesidei not the whole crew
6 mybirch Need a hug
7 coZZ @LOLTrish hey long time no see! Yes.. Rains a...
8 2Hood4Hollywood @Tatiana_K nope they didn't have it
9 mimismo @twittera que me muera ?

split the data into training, dev, and test data

In [26]: temp=data.sample(frac=0.2,random_state=200)
 : train=data.drop(temp.index)
 : dev=temp.sample(frac=0.5,random_state=200)
 : test=temp.drop(dev.index)

 : train.shape, dev.shape, test.shape

Out[26]: ((128029, 2), (16004, 2), (16004, 2))

In [27]: '''
 : Given a dataframe with a 'tweet' and 'polarity' column, this will prepare the feature
 :
 '''

 def prep_data(df):
 : df['split_tweet'] = df.tweet.map(lambda x: x.strip().lower().split())
 : df['feats'] = df['split_tweet'].map(lambda x: c.Counter(x))
 : return list(zip(df['feats'], df['polarity']))

9
This is good, right?

Answer:

- It all depends on your baseline. Since the neg/pos frequency is about 50/50, then we know our classifier is doing well when we are above that baseline. This is called the most common baseline (i.e., what is the accuracy of a random classifier that simple chooses the most common class label/type?) Right now we are about 26% above that baseline, so not bad.
- Another kind of baseline is the random baseline which is basically 1/len(types) which in this case is 2. So the random baseline here is the same as the most common baseline because it’s a binary problem. If we had 4 possible types, then the random baseline would be 25%, but the most common baseline would be the relative frequency of the most common type in the training data.

A better baseline is actually what we have above, which is our > 73% accuracy score. This is called a "bag of words" baseline. It uses the simplest features: words. Let’s work from here to make our classifier work better.

5.1 How can we improve above the baseline?

Answers:

- Use a different classifier / model (or invent your own)
- Get more data
- Fix your noisy/messy data
- Apply some knowledge about language (feature engineering)
• some ideas: 01 recipes_exploratory_analysis from https://github.com/bonzanini/nlp-tutorial

In [30]: from nltk.classify import MaxentClassifier

In [31]: me_classifier = MaxentClassifier.train(train_data, max_iter=5)

⇒ Training (5 iterations)

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Log Likelihood</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.69315</td>
<td>0.500</td>
</tr>
<tr>
<td>2</td>
<td>-0.58656</td>
<td>0.884</td>
</tr>
<tr>
<td>3</td>
<td>-0.51267</td>
<td>0.903</td>
</tr>
<tr>
<td>4</td>
<td>-0.46010</td>
<td>0.911</td>
</tr>
<tr>
<td>Final</td>
<td>-0.42025</td>
<td>0.918</td>
</tr>
</tbody>
</table>

In [32]: nltk.classify.util.accuracy(me_classifier, dev_data)

Out[32]: 0.7614346413396651

In []:

In [34]: import nltk
 import string
 from nltk.tokenize import TweetTokenizer

 tknzr = TweetTokenizer(strip_handles=True, reduce_len=True) #something better than just

 def prep_data(df):
 df['split_tweet'] = df.tweet.map(lambda x: tknzr.tokenize(x))
 df['feats'] = df.split_tweet.map(lambda x: c.Counter(x))
 return list(zip(df['feats'], df['polarity']))

In [35]: train_data = prep_data(train)
 dev_data = prep_data(dev)

/home/casey/.local/lib/python3.5/site-packages/ipykernel/__main__.py:8: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html# See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#
5.2 Concluding Remarks

- Getting into ML/NLP isn’t impossible, but it takes effort. Spend time learning about probability and information theory, linear algebra, programming, libraries and APIs (e.g., pandas, nltk, and scikit-learn in Python), and data manipulation.
- Be sure you are honest in your evaluations: never evaluate on training data!
- There are many dichotomies to ML/NLP:
 - supervised vs unsupervised learning
 - generative vs discriminative models
 - continuous vs discrete models
 - classification vs regression
 - ...
- There are some nice online tutorials and courses at Boise State University that one can take.