IVb. Wind Terms and Concepts
Valley Breeze

Warm air
Mountain Breeze
Fetch

• Distance the wind blows over a particular surface

• Example: the wind blowing in toward the shore has a long fetch (long distance over open water)
Duration

The amount of time wind blows over a particular surface
Land-Sea Breezes

- Land-sea breezes created by temperature differentials
- Winds also stronger near shore because of long unobstructed fetch
- Sea breezes typically strongest in late afternoon
Wind Rose

- A graphical representation showing the energy of the wind, the direction of the wind, and the percentages associated with the winds in a certain location in a typical year
Kinetic Energy in the Wind

Kinetic Energy = Work = \(\frac{1}{2} m V^2 \)

Where:
- \(M \) = mass of moving object
- \(V \) = velocity of moving object

What is the mass of moving air?

= density (\(\rho \)) x volume (Area x distance)
= \(\rho \times A \times d \)
= \((\text{kg/m}^3) \times \text{m}^2 \times \text{m} \)
= kg
Wind Power

Power in the wind

\[\text{Power in the wind} = \frac{1}{2} \rho A V^3 \]

- Effect of air density, \(\rho \)
- Effect of swept area, \(A \)
- Effect of wind speed, \(V \)

Swept Area: \(A = \pi R^2 \)

Area of the circle swept by the rotor (m²).